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The formalism for calculating the lineshape of a spin 1/2 J-
coupled to a high-spin nucleus undergoing quadrupolar and
chemical shift anisotropy (CSA) relaxations is derived in the
case where the tensors of both interactions are noncoincident
and nonaxial. The expressions show that the CSA—-quadrupolar
interference term which is responsible for the asymmetry of
lines involves a term depending on tensorial parameters. The
effect of this term on the lineshapes is discussed with respect
to three cases, namely coincident—axially symmetric, noncoinci-
dent-axially symmetric, and general noncoincident quadrupo-
lar and CSA tensors. These cases are considered in the analysis
of the lineshape of the *H-decoupled spectra of the 3P nucleus
J-coupled to the **Co nucleus encountered in the tetrahedral
cluster HFeCo;(CO),,PPh,H.
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INTRODUCTION

Recently we reported (1) thefirst investigation and analy-
sis of the effects of interference terms on the lineshape of a
spin 3 J-coupled to a high-spin nucleus undergoing quadru-
polar and chemical shift anisotropy (CSA ) relaxations. Such
interference terms arising from these two interactions of rank
2 when they have the same correlation times lead to differen-
tial line broadening giving rise to asymmetric lineshapes.
This was observed on the spectra of the 3P nucleus J-cou-
pled to a **Co nucleus in some tetrahedral clusters HFeCo,-
(CO)yL with a phosphorus ligand bound to a cobalt atom.
The lineshape analysis of *'P spectra was carried out with
the formalism derived by Werbelow et al. (2) whichis suited
to the case of a high-spin nucleus having coincident and
axialy symmetric quadrupolar and CSA tensors. This situa-
tion is presumably not fulfilled for the spin system encoun-
tered in tetrahedral carbonyl clusters, as has been reported
(3) in a recent solid-state **Co NMR study showing that
both tensors are noncoincident and nonaxial.

The lineshapes in the case of genera noncoincident quad-
rupolar and CSA tensors have not been studied in contrast
to the widely studied case (4—6) of dipolar and CSA tensors
for which it has been shown that the lineshapes depend on
tensorial parameters (5, 7-10). Hence, we have derived a

209

formalism for calculating the lineshapes in a more genera
case in order to perform a more correct anaysis. In this
paper, we will present the formalism and the results of analy-
sisand of reinvestigations carried out on the tetrahedral clus-
ter HFeCo;(CO),PPh,H (Fig. 1). Initialy, we shall briefly
outline the different steps for calculating the lineshapes.

BASIC THEORY

For an IS spin system, where the spin-3 Sis J-coupled to
the | quadrupolar nucleus, the usual well-resolved Smultiplet
can be changed, by relaxation processes, into a broad or
coalesced pattern without any clear multiplet structure (11).
Using the stochastic approach based on an analogy with the
chemical exchange (12, 13), thelineshape | (w) of the NMR
pattern of the Snucleus of spin3, J-coupled to one | quadru-
polar nucleus, is expressed by (11)

I(w) = W- (i + A)~*1, [1]

where W is a row vector with components proportional to
the a priori probabilities of the 21 + 1 spin states of the |
nucleus (al equal to 1); 1isa (2l + 1) unit column vector;
and Qisa (2l + 1) x (21 + 1) diagonal matrix with
elements given by the expression

Qm,m’ = (u)o - w + Jsm)(sm'm/, [2]
where wy is the Larmor frequency of spin S; m is the state
of spin|; Jg isthe S scalar coupling constant; and 6y IS
the Kronecker delta

The elements of the (21 + 1) X (21 + 1) matrix A are
given by

Anm = (=1/T2(S) — U/7)bmm + R [3]
where (1/7T»(S)) isthe natura linewidth of any one of the

(21 + 1) components of the S multiplet in the absence of
the relaxation of the spin |; R, is the total probability per
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FIG. 1. Spatial view of the cluster HFeCo,(CO),,PPh,H.

unit time of transitions occurring between the states m and
m’ of the spin I; and , is the average lifetime of the state
m of spin | expressed by

m =m

Tm = ) Rum. [4]

Depending on the strengths of the interactions of spin |
and also of the molecular motion the transition probabilities
Rnnw (M= m') are given by

Rinm = J.M (m[H(t)[m’"){m[H(t+7)[m’')*e “mnn"dr.

[3]

The bar denotes an ensemble average; H(t) is the time-
dependent relaxation Hamiltonian which may be written as
the sum of all relaxation interactions p involving the spin
I: H(t) = 2, H,(t). These various interactions, in terms of
spherical irreducible tensors, are expressed in the laboratory
frame (Lab) by

L
H#,(t) = gu z (_l)qT(Lﬁjc)JF(L/f)—q(Lau t),

g=-L

[6]

where £, is a constant related to the strength of interaction
u, T involves spin operators, and F{*), is a function of
space coordinates. The subscript L defines the tensor rank
and will be set equal to 2 since we shall limit ourselves
to tensors of rank 2, which correspond to the mechanisms
considered in this work. By substitution of this equation
into Eq. [ 5], the transition probabilities R,, .y can be readily
expressed by
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2
Rom = Y Y (=1)T9(m[THIm")
' 9,9'=-2
XAMITE) M W* 326 q (W), [7]
J*t o (wmm) being the so-called spectral density function
given by

+o 2
‘Jivg;q'(wm,m’) = gpgu'f z l:(2/1)':(2#;)*

- jj=—2

X DZqi(Qanu(1)) D2 (Quapyw (t + 7)) € “mmdr,
(8]

F{ are the irreducible coupling tensor elementsin the prin-
cipa axis system of the interaction u. They are constant and
their orientation dependence is contained in the second-rank
Wigner rotation matrix elements D2 (QLan,(t)). Quan,(t)
is defined by three Eulerian angles (ot a,., Bravy, Vi) and
describes the orientation of the principa axes of the tensor
u, relative to laboratory fixed axes, Lab. The other symbols
involving p’ have the same meaning.

At this point, we will consider that both y and n' are
molecular fixed axis systems and have the same mations.
Accordingly the choice of the molecular fixed system is
arbitrary. If we choose the principal axis system u’ and use
Wigner rotation matrices (14) we obtain

+o0 2
Jﬁ’é:-ﬂ'(wm,m') = Sygu'f z F(Z},li)F(Z{ljl)*

% jj=—2

XY DEj(Qu) DZgi (b (1)) D2 g i Quan(t + 7))

k=-2

e “mm7dr, [9]
where €2, - brings the p system into coincidence with the
u' system.

In the following we limit ourselves to the case of isotropic
molecular motion described by a single time correlation 7
in the extreme narrowing conditions, and in the case of an
isotropic medium where the orthogonality property of the
Wigner elements matrices can be used (15). In this case we
can show that the spectra density functions J*4 ¢ (Wmm)
are independent of the index g and may be expressed by

2
) N 27
Jer = €&, z F(Z‘,?)F(Zflj) Diz,J(Quyu’) ? .

ij=-2

(10]

It follows that R,y can be readily replaced by the simple
expression

Rm,m’ = z Sﬁ]’%’\]#,ll',

'

[11]
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where the quantity Si%, is a spin operator given by

2
> (M| TY Im (m| T4 [m’)*.

q=-2

[12]

This expression will reduce considerably the computational
task of evaluating the transition probabilities Ry, .y . This will
be shown below in the case of interest in the present work,
namely the case of the quadrupolar and chemical shift anisot-
ropy interactions.

In this case, the total relaxation Hamiltonian is H(t) =
Ho(t) + Hesa(t). The subscripts Q and CSA refer, respec-
tively, to the quadrupolar and chemical shift anisotropy inter-
actions. The interaction constants introduced in Eq. [6] in
terms of the quadrupole moment (Q) and the shift anisotropy
(Ac) are defined as &g = (%)\/é) (1/1(21 — 1)) (e*aQ/#)
and £csa = (1/V6)yByAc, where the symbols have their
usua meaning.

According to the conventions used in thiswork (Eqg. [6]),
the spin operators and the irreducible coupling tensor ele-
ments in the principal axis system introduced in Eq. [8] are
defined through the relationships given elsewhere (16).

The quadrupolar and CSA interactions give rise to relax-
ation mechanisms characterized, respectively, by the relax-
ation times (T1g, T2g) and (Ticsa, T2csa). Under the condi-
tions of extreme narrowing and single correlation time 7
they are given by (11)

1 1 4 N5\ .,
—=—==-02I -2 +3)|1+ = c
S e ] )( 3>w
1 6 1 4 Nésa\ .2

=2 21+ . 13
Ticsa 7 Tacsa 5( 3 )teT 1]

7Ng and ncsa being the asymmetry parameters of the quadru-
polar and CSA coupling tensors, respectively.

Accordingto Eq.[ 7] and using relation [11] , thetransition
probabilities R,y are defined as the sum of three terms:

Rom = SRmd? + ST J™ + 2SR5 I [14]

Thefirst two terms are the usua contributions of quadrupolar
and CSA interactions and involve, respectively, the autocor-
relation spectral densities J° and J°**. The third term is
the CSA —quadrupolar interference term which involves the
cross-correlation spectral density J°“**. The calculations of
J? and J°** |ead to the well-known expressions (11)

27'C
§Q|:1 + 3] 5

née | 27
3 5

J&N = 5(2;%[ [15]
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The calculation of J?C* using relation [10] for a given
orientation of the CStensor relative to the quadrupolar tensor
specified by 2ocsa = (@, B, v) yields the following expres-
sion:

QCSA

§Q§CSA [(3 cos?s — 1)

— sin?B(cos(2a)nq + €0S(2y)7ncsa)
+ ((cos®’8 + 1)cos(2a)cos(2y)

— 2 sin(2a)cos(8)sin(2y)) W’%] . [16]

Note that if it concerns a single interaction (Q or CSA) this
expression with the three Euler angles equal to zero (a =
0, 8 =0, v = 0) gives those of Eq. [15].

For the calculations of SR, St , and SRS according
to Eq. [12], the use of the expressions of spin operators
(16) and of their properties yields the following nonzero
terms:

SRme1 = (M| T3z [m = 1)2
=(2m= 1)1 =m+ 1)(1 ¥ m)
SRme2 = (M| T3z |m = 2)2
=(l=zm+2)(lFm-2)({*=m+ 1)l Fm)
mmer = (M[TRE M + 1)2
=(lxxm+ 1)(I ¥m)
SR = (M| T8z [m = 1(m[T5HA [m = 1)

=2m= 1D xm+ 1) *m).

[17]

Finally, the calculation using these expressions and those of
spectral densities (Egs. [15] and [16]) yields, in terms of
transversal relaxation times (Eg. [13]), the following non-
zero transition probabilities,

I=zm+2)(+m-D0=m+ (I +m 1

Roms2 = 221+ 3)(21 - 1) Too
Rumes = (I=m+ 2D xm)
2
[ @m=1)> 1 6 1
@I +3)2 -1 T 7Tocen

6 (2m=1) 1
¢K\ﬁ V@2l +3)21 - 1) JTZQTZCSJ
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1
K =
V@ +13/3)(1 + nésal3)
X [(3 cos’ — 1) — sin®B(cos(2a) ng

+ €0s(2y)ncsa)+ ((cos?B + 1) cos(2a)

X c0s(2y) — 2sin(2a)cos(B)sin(2y)) nQZCSA] ,

[18]

¢ being equal to +1 if the sign of the product of the quanti-
ties y = €qQ/h and Ac is positive and equal to —1 for the
opposite case. The two equations correspond to the probabil-
ity that a nucleus in state m undergoes two-quantum and
one-quantum transitions, respectively. The one-quantum
transition involves, in addition to the contribution of quadru-
polar and CSA interactions, the CSA —quadrupolar interfer-
ence term which arises since the two interactions have the
same rank and the same correlation time. The incidence of
this interference term on the lineshape | (w) (Eg. [1]) of the
NMR pattern of the Snucleus of spin 3 can be explained by
the linewidth of components of the Smultiplet. To simplify,
we can say that the linewidth is defined by the diagonal
elements of matrix A (Eg. [3]) which depend on the relax-
ation time, T,(S), and aso on the relaxation of spin | since
Tm IS @ function of the relaxation times of | (Egs. [4] and
[18]). The contribution of T,(S) to the linewidth of the
components of the Smultiplet isthe same and can beignored
in this discussion. In the case of a symmetric multiplet each
pair of lines related to the states m and —m (the low-fre-
gquency component and its corresponding high-frequency
component) has the same linewidth. As the width of each
line of the multiplet is inversely proportional to the average
lifetime of the state corresponding to the transition, the sym-
metry of the spectrum implies 7, = 7_,,. This occurs in
the cases where the spin | undergoes only one relaxation
mechanism or several relaxation mechanisms without inter-
ference between them. In the case of relaxation mechanisms
giving rise to interference terms, 7, and 7_,,, are different
and consequently the spectrum isasymmetric. The difference
between T, and 7_,,, leads to a quantity involving only inter-
ference terms. Thisis easily shown with the aid of Eqgs. [4]
and [18] in the case of a quadrupolar nucleus with | = 1.
The above equations show that the interference term con-
tains afactor defined by K which depends on the asymmetry
parameters ng and nesa and aso on the orientation of the
CS tensor relative to the quadrupolar tensor specified by
the three Euler angles («, 8, v). The dependence of the
interference term on the tensorial parameters will have a
direct effect on the lineshapes, notably on their asymmetry.
This will be discussed in the following section where three
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FIG. 2. Experimental *P{*H} NMR spectra of the cluster HFeCo,(-
CO)4,PPh,H in CD,CI, at 303 K (bottom) and 313 K (top) at three different
fields. The calculated spectra were obtained with the parameters listed in
Table 1.

cases are considered, namely coincident—axially symmetric,
noncoincident—axially symmetric, and general noncoinci-
dent quadrupolar and CSA tensors. Equally, these cases will
be considered in the analysis of the spectra of the 3'P nucleus
J-coupled to a *®Co nucleus encountered in the tetrahedral
cluster HFeCo;(CO),,PPh,H with the phosphine ligand
bound to a cobalt atom. The *'P spectra are displayed in
Fig. 2 aong with the temperature and field values used.
Experimental conditions for observing these spectra are
given elsewhere (1).

ANALYSIS AND DISCUSSION

For the case of interest in the present work, a spin-: nu-
cleus (**P) J-coupled to a spin-5 nucleus (**Co), the transi-
tion probabilities required for the cal culations were obtained
from Eq. [18] for | = 4, yielding the following nonzero
transition probabilities:
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— E‘ |:i + E —+ ¢K -
+7/2,+5/2 10 T2Q 7 T2CSA — 7 m
7 1
Ri7/p13/0=——
+712:+3/2 = 70 T
8l 1 45 1 45 1
Risipago==| — +— + oK [ =
oz Ty [TZQ WTom ¢ \ 14@]
31
R+ + = T
+5/2,+1/2 2T2Q
R _1.[ 1 90 1 - oK
+3/2,+1/2 2 TZQ 7 TZCSA — m
1
Risioz12 = ZE
48 1
R¢1/2,11/2 = 7TZCSA . [19]

Under the assumption that other broadening mechanisms
of the spin S nucleus are negligible (1/T,(S) = 0), I(w)
depends on the S chemical shift (ws), the coupling constant
Jg, the relaxation times of | (T, Tacsa), ¢ (= 1), and
thevalue of K. In thefollowing, these cases will be discussed
and used to analyze the *P spectra. In this analysis, (a) it
has been assumed that the P—Co system is an I Sspin system
and (b) the Co relaxation is described with the assumptions
of an extreme narrowing, single correlation time.

To analyze the lineshapes, an iterative nonlinear least-
squaresfitting of the experimental lineshapes has been devel-
oped, using the Powell method (17) from the Numerical
Recipes package (18). The accuracy of each parameter was
determined using the Harwell subroutine SV02A. Computa-
tions were performed on a Silicon Graphics computer with
a FORTRAN program Quad-CSA written by the authors.
The parameters used in the fit of the experimental lineshapes
are the coupling constant J(*'P—°°Co), the *°Co relaxation
times (Tq, Tacsa), and the *'P chemical shift way,. In the
lineshape analysis we have taken into account the parameter
K considering three different cases of quadrupolar and CSA
tensors which will now be presented.

Coincident and Axially Symmetric Tensors

In this case where ng = 0, csa = 0, and (¢ = 0, 8 = 0
v = 0), the quantity K is reduced to 2. For this particular
case, the transition probabilities were first calculated for a
spin 3 J-coupled to a nucleus of spin 3 (19). Recently, the
theoretical lineshape of a spin 3 J-coupled to a nucleus of
integer or half-integer spins has been presented and the tran-
sition probabilities R,y have been calculated up to | = 3
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(2). In the work cited, the case of a quadrupolar nucleus
with spin 3 has been discussed in detail. More recently, the
above explicit expressions with (K = 2) were reported along
with a discussion of the lineshapes in the case of a spin %
as the results of lineshape analysis of experimental data (1).

For the compound HFeCo,(CO).,PPh,H, the fit using the
program Quad-CSA was done for the spectra recorded at
three different magnetic fields and two different tempera-
tures. They are displayed in Fig. 2 along with spectra calcu-
lated with the fit parameters. The values of the latter with
those of relaxation times of the related cobalt nucleus di-
rectly messured are listed in Table 1 where ws,, is replaced
by 621, Which corresponds to *'P chemical shifts relative to
external H;PO, in H,0. A discussion of these results in this
case of coincident and axially symmetric quadrupolar and
CSA tensors has formed the subject of our recent publication
(1); here other cases will be examined.

Noncoincident and Axially Symmetric Tensors

For this case where ng = 0 and ncsa = 0O, the quantity K

(Eq. [18]) becomes

K = (3 cos?’s — 1) [20]
B is the angle between the principa axes of the two tensors.
In Fig. 3, the effect of 8 on the lineshapes through the
CSA —quadrupolar interference is illustrated using, in the
calculations of | (w), a set of values corresponding to those
found experimentally on tetrahedral carbonyl clusters. The
plots in Fig. 3 are generated for Jg = 450 Hz, T, = 500
us, Tocen = 5ms, ¢ = —1 and for different values of .
These simulations show that the eight lines of the multiplet
collapse into a broad pattern. The lack of multiplet structure
is dueto the combined effects of the relaxation of the quadru-
polar nucleus | and of the scalar relaxation of the second
kind (11) of the | nucleus on the S nucleus.

The asymmetry of the lineshapes arises from the CSA —
quadrupolar interference term. As can be seen in Fig. 3, the
asymmetry is maximum for g = 0°, vanishes for § = 54.7°
(magic angle), appears with a reversed sense for values
>54.7°, and reaches another maximum for 8 = 90°. This
behavior reflects the dependence of K on g since the asym-
metry of lineshapes is directly modulated by K. The values
of the latter are between 2 and —1 which correspond to the
two maxima of the asymmetry of spectra. The spectrum
calculated with 8 = 0° (K = 2) is more asymmetrical than
that calculated with 5 = 90° (K = —1). For values of g
increasing from 90° to 180°, the asymmetry will decrease,
vanish for § = © — 54.7° (magic angle), increase with a
reversed sense, and reach another maximum for g = 180°.
It must be noted that due to the form of the 8 dependence
of K, the spectra corresponding to 4 and to its complement
— 3 are similar. The result is that, as in solid-state NMR, it
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TABLE 1
Parameters Obtained from the Analysis of 3*P{*H} Spectra of the Cluster HFeCo3(CO),;PPh,H along with the Results
of the Longitudinal Relaxation-Time Measurements (T;) of a Cobalt Nucleus Bound to Phosphorus

Temperature Field 631, J(*P-"Co) Tao Tocsa KN Tacsa T
(K) (M (ppm) (H2) (1s) (ms) (ms™?) (1s)
303 71 132 + 0.2 450 + 8 450 + 40 14+7 0.53 500 + 40

9.46 126 + 0.2 454 = 7 520 + 50 8+3 0.71 555 + 20

11.83 13.0 = 0.2 452 + 8 500 + 50 5+ 2 0.9 510 + 20

313 71 131+ 0.1 448 = 5 550 + 40 17+ 8 0.49 620 + 20
9.46 129 + 0.2 454 + 8 550 + 70 10+6 0.63 630 = 20

11.83 135 + 0.2 452 = 5 600 + 60 7+2 0.76 605 = 20

2 Relative to external H;PO, in H,0O.

is impossible to distinguish between the two values of the
angle between the principal axes of the two tensors.

In Fig. 4, the effect of 8 on the lineshapes is presented
for a poorly resolved multiplet. The spectra correspond to a
spin-3 nucleus J-coupled to a spin-4 nucleus calculated for
Jg = 450 Hz, Tyq = 50 us, Tocsa = 50 mMs, ¢ = —1 and
for different values of S8 varying from 0° to 180°. These
simulations show that for values of S increasing from 0°
to 54.7° the resolution of the multiplet and the asymmetry
decrease, leading to a symmetric shape. The opposite behav-
ior of the lineshape of the multiplet is obtained for values
of g increasing until 8 = 90°. For values of S between 90°
and 180° the lineshapes behave as indicated in the above
case. As can be seen in Figs. 3 and 4, the change of the
sense of the asymmetry of the lineshape is linked to the sign
of the K values. This point will be tackled after a brief
discussion about the general case.

For the ¥P-"°Co spin system in HFeCo;(CO),,PPh,H,
since the relaxation of the **Co nucleus by the CSA mecha-
nism is weaker than the quadrupolar mechanism (1) as in
the case of other clusters (20—22), the transition probabili-
ties R, v and consequently the lineshapes will depend on 1/
Tag and K/VTqT2csa but not on 1/Toesa . The result is that
the lineshape analysis may provide only T, and the ratio
K/VT,csa. As the values of K and T,csa are found to be
correlated, the recourse to a new fitting of the experimental
lineshapesisuseless since K/VT,cen Can be determined using
the results obtained in the case of coincident and axially
symmetric quadrupolar and CSA tensors. For K = 2, the
values of the ratio are presented in Table 1. Of course the
values of the other parameters, except Tocsa Which is unde-
termined, are the same. Since K is between —1 and 2, Tocea
is therefore inferior or equal to that obtained in the case
of coincident and axially symmetric quadrupolar and CSA
tensors (Table 1). However, the presence of the asymmetry
of the lineshapes enables us to exclude values of K close to
zero and as a consequence we conclude that 3 is far from
the magic angle. In the same way, we can eliminate the low
values of K which lead to low values of T,csa in the range

of the T,o values since the CSA contribution to the cobalt
relaxation must remain weak. Further discussions on these
parameters of the 3'P—*Co spin system require information,
not available to date, about the two quadrupolar and CSA
tensors. These conclusions are equally true for the lineshape
analysis of the case of general noncoincident quadrupolar
and CSA tensors which will now be presented.

General Noncoincident Tensors

For this case, the CSA —quadrupolar interference term in-
volves a quantity K depending on the asymmetry parameters
N and nesa and aso on the three Euler angles («, 5, v).
Asin the above case, the lineshapes are determined by Tocea
and T, and aso by the value of K. The expression of K
shows that the values of K range from —1 to 2 and that a
given value of K corresponds to several sets of the values
of 7o, Nesa, and the three Euler angles («, 8, v). This
indicates that the lineshape analysis may leads to K but not
to the values of each tensorial parameter.

For the *P-%°Co spin system in HFeCo;(CO).;,PPh,H,
using this case of general noncoincident CSA and quadrupo-
lar tensors, the lineshape analysis leads to the same results
as in the above case. Hence, only the values of the ratio
K/VT.csa, Obtained above and listed in Table 1, are accessi-
ble. The T,csa VAlue must beinferior or equal to that obtained
in the former case of coincident and axially symmetric quad-
rupolar and CSA tensors. The values of K cannot be close
to zero and the other parameters remain unchanged. As stated
above, the lack of information about the two related tensors
limits our discussion.

The last point to consider in this section concerns the
sense of the asymmetry of the lines. This point has been
also discussed in the case of dipolar and CSA interactions
(8, 23—25) which presents similarities with the related case.
For the quadrupolar and CSA interactions, the sense of the
asymmetry depends on the sign of the three quantities Jg,
¢, and K. Since the sign of ¢ depends on the product of x
= e?gQ/h and Ao, the sense of the asymmetry will depend
on the product of the four quantities. The general rule for
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FIG. 3. Theoretical spectrafor a spin-1/2 nucleus J-coupled to a spin-
712 nucleus in the case of noncoincident and axialy symmetric tensors.
The plots versus reduced frequency (wo, — w)/Jg correspond to Jg = 450
Hz, Tyo = 500 S, Tacsa = 5mMs, ¢ = —1 and to different values of g
(left side).

the sense of the asymmetry of the spectrum is as follows.
If the quantity J-x-Ac-K is negative, the spectrum is
asymmetrical with the highest maximum on the low-fre-
guency side of the pattern, and with the asymmetry reversed
if thesign of J- x - Ao - K is positive. The spectra displayed
in Fig. 3 are calculated for positive values of the product
J-x +Aoc. The highest maximum is on the left side if K is
positive and is on the right side if K is negative.

The asymmetry of the 3P spectra shows that the sign
of the product J- x - Ao - K is negative. Since the coupling
constant between phosphorus and cobalt nuclei seems to be
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positive (26), the sign of x - Ao - K is therefore negative.
For the case of coincident and axially symmetric quadrupolar
and CSA tensors K is positive (K = 2) and consequently
the sign of x - Ao is negative. The absolute sign of these
two quantities requires supplementary information which is
not available.

Throughout this paper we have used the model of isotropic
molecular motion described by a single correlation time.
This model alows a complete calculation of the lineshape
and shows the influence of the relative orientation of the
related tensors on the lineshapes. Nevertheless it is clear
that the presence of anisotropic interactions often implies a
nonisotropic molecular motion described by multiple corre-
lation times. This situation introduces a complexity in the
calculation of lineshapes.

CONCLUSION

In this paper, we have derived aformalism for calculating
the lineshapes of a spin 3 J-coupled to a high-spin nucleus
undergoing quadrupolar and chemical shift anisotropy relax-
ations in the case of general noncoincident quadrupolar and
CSA tensors. The expressions show that the CSA —quadru-
polar interference term which is responsible for the asymme-
try of linesinvolves afactor K depending on the asymmetry
parameter 1o and ncsa and on the three Euler angles («, 3,
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FIG. 4. Theoretical spectra for a spin-1/2 nucleus J-coupled to a spin-
712 nucleus in the case of noncoincident and axially symmetric tensors.
The plots versus reduced frequency (wo, — w)/Jg correspond to Jg = 450
Hz, Too = 50 s, Tocsa = 50 ms, ¢ = —1 and to values of 8 varying from
0° to 180°.
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v). The values of K range from —1 to 2. The value K = 2
corresponds to the case of coincident and axialy symmetric
guadrupolar and CSA tensors. For the case of axially sym-
metric quadrupolar and CSA tensors with the magic angle
between the principal axes K is equal to zero and the line-
shapes are symmetric.

Using this general formalism, the lineshape anaysis of
the 3'P spectra in HFeCo,(CO),,PPh,H confirms the results
obtained considering the case of coincident and axially sym-
metric quadrupolar and CSA tensors (1). The same vaues
are obtained for the *'P chemical shift 6, J(**P—*Co),
and T, (*°Co). However, Tocsa (**Co) and K are found to
be correlated and only the ratio K/vT,csa (*°C0) is provided
by the lineshape analysis. The measure of T,cen (*°Co) re-
quires information about the two tensors. For this work,
solid-state NMR can be useful.
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