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The formalism for calculating the lineshape of a spin 1 /2 J- formalism for calculating the lineshapes in a more general
coupled to a high-spin nucleus undergoing quadrupolar and case in order to perform a more correct analysis. In this
chemical shift anisotropy (CSA) relaxations is derived in the paper, we will present the formalism and the results of analy-
case where the tensors of both interactions are noncoincident sis and of reinvestigations carried out on the tetrahedral clus-
and nonaxial. The expressions show that the CSA–quadrupolar ter HFeCo3(CO)11PPh2H (Fig. 1) . Initially, we shall briefly
interference term which is responsible for the asymmetry of

outline the different steps for calculating the lineshapes.lines involves a term depending on tensorial parameters. The
effect of this term on the lineshapes is discussed with respect

BASIC THEORYto three cases, namely coincident–axially symmetric, noncoinci-
dent–axially symmetric, and general noncoincident quadrupo-

For an IS spin system, where the spin-1
2 S is J-coupled tolar and CSA tensors. These cases are considered in the analysis

of the lineshape of the 1H-decoupled spectra of the 31P nucleus the I quadrupolar nucleus, the usual well-resolved S multiplet
J-coupled to the 59Co nucleus encountered in the tetrahedral can be changed, by relaxation processes, into a broad or
cluster HFeCo3 (CO)11PPh2H. q 1998 Academic Press coalesced pattern without any clear multiplet structure (11) .

Using the stochastic approach based on an analogy with the
chemical exchange (12, 13) , the lineshape I(v) of the NMR

INTRODUCTION pattern of the S nucleus of spin 1
2, J-coupled to one I quadru-

polar nucleus, is expressed by (11)
Recently we reported (1) the first investigation and analy-

sis of the effects of interference terms on the lineshape of a I(v) } Wr( iV / A)01
r1 , [1]

spin 1
2 J-coupled to a high-spin nucleus undergoing quadru-

polar and chemical shift anisotropy (CSA) relaxations. Such
where W is a row vector with components proportional to

interference terms arising from these two interactions of rank
the a priori probabilities of the 2I / 1 spin states of the I

2 when they have the same correlation times lead to differen-
nucleus (all equal to 1); 1 is a (2I / 1) unit column vector;

tial line broadening giving rise to asymmetric lineshapes.
and V is a (2I / 1) 1 (2I / 1) diagonal matrix with

This was observed on the spectra of the 31P nucleus J-cou-
elements given by the expression

pled to a 59Co nucleus in some tetrahedral clusters HFeCo3-
(CO)11L with a phosphorus ligand bound to a cobalt atom.

Vm ,m= Å (v0 0 v / JSIm)dm ,m= , [2]The lineshape analysis of 31P spectra was carried out with
the formalism derived by Werbelow et al. (2) which is suited

where v0 is the Larmor frequency of spin S ; m is the stateto the case of a high-spin nucleus having coincident and
of spin I ; JSI is the SI scalar coupling constant; and dm ,m= isaxially symmetric quadrupolar and CSA tensors. This situa-
the Kronecker delta.tion is presumably not fulfilled for the spin system encoun-

The elements of the (2I / 1) 1 (2I / 1) matrix A aretered in tetrahedral carbonyl clusters, as has been reported
given by(3) in a recent solid-state 59Co NMR study showing that

both tensors are noncoincident and nonaxial.
Am ,m= Å (01/T2(S) 0 1/tm)dm ,m= / Rm ,m= , [3]The lineshapes in the case of general noncoincident quad-

rupolar and CSA tensors have not been studied in contrast
to the widely studied case (4–6) of dipolar and CSA tensors where (1/pT2(S)) is the natural linewidth of any one of the

(2I / 1) components of the S multiplet in the absence offor which it has been shown that the lineshapes depend on
tensorial parameters (5, 7–10) . Hence, we have derived a the relaxation of the spin I ; Rm ,m= is the total probability per
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Rm ,m= Å ∑
m,m=

∑
2

q ,q =Å02

(01) q/q =
»mÉT (m)

2,q Ém * …

1 »mÉT (m= )
2,q = Ém * …*Jm,m=

0q ,0q =(vm ,m=) , [7]

Jm,m=
0q ,0q =(vm ,m=) being the so-called spectral density function

given by

Jm,m=
0q ,0q =(vm ,m=) Å jmjm= *

/`

0`
∑
2

i ,jÅ02

F (m)
2,i F (m= )*

2, j

1 D 2*
0q ,i(VLab,m( t))D 2

0q =, j(VLab,m=( t / t))e0 ivm,m=tdt.

[8]

F (m)
2,i are the irreducible coupling tensor elements in the prin-

FIG. 1. Spatial view of the cluster HFeCo3(CO)11PPh2H.
cipal axis system of the interaction m. They are constant and
their orientation dependence is contained in the second-rank
Wigner rotation matrix elements D 2

0q ,i(VLab,m( t)) . VLab,m( t)
unit time of transitions occurring between the states m and is defined by three Eulerian angles (aLab,m , bLab,m , gLab,m) and
m * of the spin I ; and tm is the average lifetime of the state describes the orientation of the principal axes of the tensor
m of spin I expressed by m, relative to laboratory fixed axes, Lab. The other symbols

involving m* have the same meaning.
At this point, we will consider that both m and m* are

t01
m Å ∑

m=xm

m=

Rm ,m= . [4] molecular fixed axis systems and have the same motions.
Accordingly the choice of the molecular fixed system is
arbitrary. If we choose the principal axis system m* and use

Depending on the strengths of the interactions of spin I Wigner rotation matrices (14) we obtain
and also of the molecular motion the transition probabilities
Rm ,m= (m x m *) are given by

Jm,m=
0q ,0q =(vm ,m=) Å jmjm= *

/`

0`
∑
2

i ,jÅ02

F (m)
2,i F (m= )*

2, j

Rm ,m= Å*
/`

0`

»mÉH( t)Ém * … »mÉH( t/ t)Ém * …*e0 ivm,m=tdt.
1 ∑

2

kÅ02

D 2
k ,j(Vm,m=) D 2*

0q ,i(VLab,m( t))D 2
0q =,k(VLab,m( t/ t))

[5]
e0 ivm,m=tdt, [9]

The bar denotes an ensemble average; H( t) is the time-
where Vm,m= brings the m system into coincidence with the

dependent relaxation Hamiltonian which may be written as
m* system.

the sum of all relaxation interactions m involving the spin
In the following we limit ourselves to the case of isotropic

I : H( t) Å (m Hm( t) . These various interactions, in terms of
molecular motion described by a single time correlation tcspherical irreducible tensors, are expressed in the laboratory
in the extreme narrowing conditions, and in the case of an

frame (Lab) by
isotropic medium where the orthogonality property of the
Wigner elements matrices can be used (15) . In this case we
can show that the spectral density functions Jm,m=

0q ,0q =(vm ,m=)Hm( t) Å jm ∑
L

qÅ0L

(01) qT (m)
L ,qF (m)

L ,0q(Lab, t) , [6]
are independent of the index q and may be expressed by

where jm is a constant related to the strength of interaction Jm,m= Å jmjm= ∑
2

i , jÅ02

F (m)
2,i F (m= )*

2, j D 2
i , j(Vm,m=)

2tc

5
. [10]

m, T (m)
L ,q involves spin operators, and F (m)

L ,0q is a function of
space coordinates. The subscript L defines the tensor rank
and will be set equal to 2 since we shall limit ourselves It follows that Rm ,m= can be readily replaced by the simple
to tensors of rank 2, which correspond to the mechanisms expression
considered in this work. By substitution of this equation
into Eq. [5] , the transition probabilities Rm ,m= can be readily Rm ,m= Å ∑

m,m=

Sm,m=
m ,m=J

m,m= , [11]
expressed by
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211DIFFERENTIAL LINE BROADENING

The calculation of JQ,CSA using relation [10] for a givenwhere the quantity Sm,m=
m ,m= is a spin operator given by

orientation of the CS tensor relative to the quadrupolar tensor
specified by VQ,CSA Å (a, b, g) yields the following expres-Sm,m=

m ,m= Å ∑
2

qÅ02

»mÉT (m)
2,q Ém * … »mÉT (m= )

2,q Ém * …*. [12]
sion:

This expression will reduce considerably the computational
task of evaluating the transition probabilities Rm ,m= . This will JQ,CSA Å jQjCSA

tc

5
1 F(3 cos2b 0 1)

be shown below in the case of interest in the present work,
namely the case of the quadrupolar and chemical shift anisot-

0 sin2b(cos(2a)hQ / cos(2g)hCSA)ropy interactions.
In this case, the total relaxation Hamiltonian is H( t) Å / ((cos2b / 1)cos(2a)cos(2g)

HQ( t) / HCSA( t) . The subscripts Q and CSA refer, respec-
tively, to the quadrupolar and chemical shift anisotropy inter- 0 2 sin(2a)cos(b)sin(2g))

hQhCSA

3 G . [16]
actions. The interaction constants introduced in Eq. [6] in
terms of the quadrupole moment (Q) and the shift anisotropy
(Ds) are defined as jQ Å ( 1

4 )
√
( 3

2 ) (1/I(2I 0 1)) (e 2qQ /\)
Note that if it concerns a single interaction (Q or CSA) thisand jCSA Å (1/

√
6)gB0Ds, where the symbols have their

expression with the three Euler angles equal to zero (a Åusual meaning.
0, b Å 0, g Å 0) gives those of Eq. [15].According to the conventions used in this work (Eq. [6]) ,

For the calculations of SQ
m ,m= , SCSA

m ,m= , and SQ,CSA
m ,m= accordingthe spin operators and the irreducible coupling tensor ele-

to Eq. [12], the use of the expressions of spin operatorsments in the principal axis system introduced in Eq. [8] are
(16) and of their properties yields the following nonzerodefined through the relationships given elsewhere (16) .
terms:The quadrupolar and CSA interactions give rise to relax-

ation mechanisms characterized, respectively, by the relax-
ation times (T1Q , T2Q) and (T1CSA, T2CSA) . Under the condi- SQ

m ,m{1 Å »mÉTQ
2,|1Ém { 1 … 2

tions of extreme narrowing and single correlation time tc
Å (2m { 1)2(I { m / 1)(I | m)they are given by (11)

SQ
m ,m{2 Å »mÉTQ

2,|2Ém { 2 … 2

1
T1Q

Å 1
T2Q

Å 4
5

(2I 0 1)(2I / 3)S1 / h 2
Q

3 Dj 2
Qtc Å (I { m / 2)(I | m 0 1)(I { m / 1)(I | m)

SCSA
m ,m{1 Å »mÉTQ,CSA

2,|1 Ém { 1 … 2

1
T1CSA

Å 6
7

1
T2CSA

Å 4
5 S1 / h 2

CSA

3 Dj 2
CSAtc , [13] Å (I { m / 1)(I | m)

SQ,CSA
m ,m{1 Å »mÉTQ

2,|1Ém { 1 … »mÉTCSA
2,|1Ém { 1 … [17]

hQ and hCSA being the asymmetry parameters of the quadru- Å (2m { 1)(I { m / 1)(I | m) .
polar and CSA coupling tensors, respectively.

According to Eq. [7] and using relation [11], the transition
Finally, the calculation using these expressions and those of

probabilities Rm ,m= are defined as the sum of three terms:
spectral densities (Eqs. [15] and [16]) yields, in terms of
transversal relaxation times (Eq. [13]) , the following non-Rm ,m= Å SQ

m ,m=J
Q / SCSA

m ,m=J
CSA / 2SQ,CSA

m ,m= JQ,CSA. [14]
zero transition probabilities,

The first two terms are the usual contributions of quadrupolar
and CSA interactions and involve, respectively, the autocor-

Rm,m{2Å
(I{m/ 2)(I|m0 1)(I{m/ 1)(I|m)

2(2I/ 3)(2I0 1)
1

T2Q
relation spectral densities JQ and JCSA. The third term is
the CSA–quadrupolar interference term which involves the
cross-correlation spectral density JQ,CSA. The calculations of

Rm,m{1Å
(I{m/ 1)(I|m)

2JQ and JCSA lead to the well-known expressions (11)

1 F (2m{ 1)2

(2I/ 3)(2I0 1)
1

T2Q

/ 6
7

1
T2CSA

JQ Å j 2
QF1 / h 2

Q

3 G 2tc

5

JCSA Å j 2
CSAF1 / h 2

CSA

3 G 2tc

5
. [15] / fK

√
6
7

(2m{ 1)√
(2I/ 3)(2I0 1)

1√
T2QT2CSA

G
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KÅ 1√
(1/ h 2

Q/3)(1/ h 2
CSA/3)

1 F(3 cos2b0 1)0 sin2b(cos(2a)hQ

/ cos(2g)hCSA)/ ((cos2b/ 1) cos(2a)

1 cos(2g)0 2 sin(2a)cos(b)sin(2g))
hQhCSA

3 G ,

[18]

f being equal to /1 if the sign of the product of the quanti-
ties x Å e 2qQ /h and Ds is positive and equal to 01 for the
opposite case. The two equations correspond to the probabil-
ity that a nucleus in state m undergoes two-quantum and
one-quantum transitions, respectively. The one-quantum
transition involves, in addition to the contribution of quadru-
polar and CSA interactions, the CSA–quadrupolar interfer-
ence term which arises since the two interactions have the
same rank and the same correlation time. The incidence of
this interference term on the lineshape I(v) (Eq. [1]) of the
NMR pattern of the S nucleus of spin 1

2 can be explained by
the linewidth of components of the S multiplet. To simplify,
we can say that the linewidth is defined by the diagonal
elements of matrix A (Eq. [3]) which depend on the relax-
ation time, T2(S) , and also on the relaxation of spin I since
tm is a function of the relaxation times of I (Eqs. [4] and
[18]) . The contribution of T2(S) to the linewidth of the
components of the S multiplet is the same and can be ignored

FIG. 2. Experimental 31P{1H} NMR spectra of the cluster HFeCo3(-in this discussion. In the case of a symmetric multiplet each
CO)11PPh2H in CD2Cl2 at 303 K (bottom) and 313 K (top) at three differentpair of lines related to the states m and 0m ( the low-fre-
fields. The calculated spectra were obtained with the parameters listed inquency component and its corresponding high-frequency Table 1.

component) has the same linewidth. As the width of each
line of the multiplet is inversely proportional to the average
lifetime of the state corresponding to the transition, the sym- cases are considered, namely coincident–axially symmetric,
metry of the spectrum implies tm Å t0m . This occurs in noncoincident–axially symmetric, and general noncoinci-
the cases where the spin I undergoes only one relaxation dent quadrupolar and CSA tensors. Equally, these cases will
mechanism or several relaxation mechanisms without inter- be considered in the analysis of the spectra of the 31P nucleus
ference between them. In the case of relaxation mechanisms J-coupled to a 59Co nucleus encountered in the tetrahedral
giving rise to interference terms, tm and t0m are different cluster HFeCo3(CO)11PPh2H with the phosphine ligand
and consequently the spectrum is asymmetric. The difference bound to a cobalt atom. The 31P spectra are displayed in
between tm and t0m leads to a quantity involving only inter- Fig. 2 along with the temperature and field values used.
ference terms. This is easily shown with the aid of Eqs. [4] Experimental conditions for observing these spectra are
and [18] in the case of a quadrupolar nucleus with I Å 1. given elsewhere (1) .

The above equations show that the interference term con-
tains a factor defined by K which depends on the asymmetry ANALYSIS AND DISCUSSION
parameters hQ and hCSA and also on the orientation of the

For the case of interest in the present work, a spin-1
2 nu-CS tensor relative to the quadrupolar tensor specified by

cleus (31P) J-coupled to a spin-7
2 nucleus (59Co), the transi-the three Euler angles (a, b, g) . The dependence of the

tion probabilities required for the calculations were obtainedinterference term on the tensorial parameters will have a
from Eq. [18] for I Å 7

2, yielding the following nonzerodirect effect on the lineshapes, notably on their asymmetry.
This will be discussed in the following section where three transition probabilities:
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(2) . In the work cited, the case of a quadrupolar nucleus
R{7/2,{5/2Å

21
10 F 1

T2Q

/ 10
7

1
T2CSA

{ fK

√
10
7

1√
T2QT2CSA

G with spin 5
2 has been discussed in detail. More recently, the

above explicit expressions with (K Å 2) were reported along
with a discussion of the lineshapes in the case of a spin 7

2

R{7/2,{3/2Å
7
10

1
T2Q

as the results of lineshape analysis of experimental data (1) .
For the compound HFeCo3(CO)11PPh2H, the fit using the

program Quad-CSA was done for the spectra recorded at
R{5/2,{3/2Å

8
5 F 1

T2Q

/ 45
14

1
T2CSA

{ fK

√
45
14

1√
T2QT2CSA

G three different magnetic fields and two different tempera-
tures. They are displayed in Fig. 2 along with spectra calcu-
lated with the fit parameters. The values of the latter with
those of relaxation times of the related cobalt nucleus di-R{5/2,{1/2Å

3
2

1
T2Q rectly measured are listed in Table 1 where v31P

is replaced
by d31P

which corresponds to 31P chemical shifts relative to
R{3/2,{1/2Å

1
2 F 1

T2Q

/ 90
7

1
T2CSA

{ fK

√
90
7

1√
T2QT2CSA

G external H3PO4 in H2O. A discussion of these results in this
case of coincident and axially symmetric quadrupolar and
CSA tensors has formed the subject of our recent publication

R{3/2,|1/2Å 2
1

T2Q

(1) ; here other cases will be examined.

Noncoincident and Axially Symmetric Tensors
R{1/2,|1/2Å

48
7

1
T2CSA

. [19]
For this case where hQ Å 0 and hCSA Å 0, the quantity K

(Eq. [18]) becomes
Under the assumption that other broadening mechanisms

K Å (3 cos2b 0 1)2 . [20]of the spin S nucleus are negligible (1/T2(S) Å 0), I(v)
depends on the S chemical shift (vS) , the coupling constant

b is the angle between the principal axes of the two tensors.JSI , the relaxation times of I (T2Q , T2CSA) , f (Å {1), and
In Fig. 3, the effect of b on the lineshapes through thethe value of K . In the following, these cases will be discussed
CSA–quadrupolar interference is illustrated using, in theand used to analyze the 31P spectra. In this analysis, (a) it
calculations of I(v) , a set of values corresponding to thosehas been assumed that the P–Co system is an IS spin system
found experimentally on tetrahedral carbonyl clusters. Theand (b) the Co relaxation is described with the assumptions
plots in Fig. 3 are generated for JSI Å 450 Hz, T2Q Å 500of an extreme narrowing, single correlation time.
ms, T2CSA Å 5 ms, f Å 01 and for different values of b.To analyze the lineshapes, an iterative nonlinear least-
These simulations show that the eight lines of the multipletsquares fitting of the experimental lineshapes has been devel-
collapse into a broad pattern. The lack of multiplet structureoped, using the Powell method (17) from the Numerical
is due to the combined effects of the relaxation of the quadru-Recipes package (18) . The accuracy of each parameter was
polar nucleus I and of the scalar relaxation of the seconddetermined using the Harwell subroutine SV02A. Computa-
kind (11) of the I nucleus on the S nucleus.tions were performed on a Silicon Graphics computer with

The asymmetry of the lineshapes arises from the CSA–a FORTRAN program Quad-CSA written by the authors.
quadrupolar interference term. As can be seen in Fig. 3, theThe parameters used in the fit of the experimental lineshapes
asymmetry is maximum for b Å 07, vanishes for b Å 54.77are the coupling constant J(31P– 59Co), the 59Co relaxation
(magic angle) , appears with a reversed sense for valuestimes (T2Q , T2CSA) , and the 31P chemical shift v31P

. In the
ú54.77, and reaches another maximum for b Å 907. Thislineshape analysis we have taken into account the parameter
behavior reflects the dependence of K on b since the asym-K considering three different cases of quadrupolar and CSA
metry of lineshapes is directly modulated by K . The valuestensors which will now be presented.
of the latter are between 2 and 01 which correspond to the
two maxima of the asymmetry of spectra. The spectrumCoincident and Axially Symmetric Tensors
calculated with b Å 07 (K Å 2) is more asymmetrical than

In this case where hQ Å 0, hCSA Å 0, and (a Å 0, b Å 0, that calculated with b Å 907 (K Å 01). For values of b
g Å 0), the quantity K is reduced to 2. For this particular increasing from 907 to 1807, the asymmetry will decrease,
case, the transition probabilities were first calculated for a vanish for b Å p 0 54.77 (magic angle) , increase with a
spin 1

2 J-coupled to a nucleus of spin 3
2 (19) . Recently, the reversed sense, and reach another maximum for b Å 1807.

theoretical lineshape of a spin 1
2 J-coupled to a nucleus of It must be noted that due to the form of the b dependence

of K , the spectra corresponding to b and to its complementinteger or half-integer spins has been presented and the tran-
sition probabilities Rm ,m= have been calculated up to I Å 9

2 0b are similar. The result is that, as in solid-state NMR, it
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TABLE 1
Parameters Obtained from the Analysis of 31P{1H} Spectra of the Cluster HFeCo3(CO)11PPh2H along with the Results

of the Longitudinal Relaxation-Time Measurements (T1) of a Cobalt Nucleus Bound to Phosphorus

d31P

a
Temperature Field J(31P–59Co) T2Q T2CSA K/

√
T2CSA T1

(K) (T) (ppm) (Hz) (ms) (ms) (ms01/2) (ms)

303 7.1 13.2 { 0.2 450 { 8 450 { 40 14 { 7 0.53 500 { 40
9.46 12.6 { 0.2 454 { 7 520 { 50 8 { 3 0.71 555 { 20

11.83 13.0 { 0.2 452 { 8 500 { 50 5 { 2 0.9 510 { 20
313 7.1 13.1 { 0.1 448 { 5 550 { 40 17 { 8 0.49 620 { 20

9.46 12.9 { 0.2 454 { 8 550 { 70 10 { 6 0.63 630 { 20
11.83 13.5 { 0.2 452 { 5 600 { 60 7 { 2 0.76 605 { 20

a Relative to external H3PO4 in H2O.

is impossible to distinguish between the two values of the of the T2Q values since the CSA contribution to the cobalt
relaxation must remain weak. Further discussions on theseangle between the principal axes of the two tensors.

In Fig. 4, the effect of b on the lineshapes is presented parameters of the 31P– 59Co spin system require information,
not available to date, about the two quadrupolar and CSAfor a poorly resolved multiplet. The spectra correspond to a

spin-1
2 nucleus J-coupled to a spin-7

2 nucleus calculated for tensors. These conclusions are equally true for the lineshape
analysis of the case of general noncoincident quadrupolarJSI Å 450 Hz, T2Q Å 50 ms, T2CSA Å 50 ms, f Å 01 and
and CSA tensors which will now be presented.for different values of b varying from 07 to 1807. These

simulations show that for values of b increasing from 07
General Noncoincident Tensorsto 54.77 the resolution of the multiplet and the asymmetry

decrease, leading to a symmetric shape. The opposite behav- For this case, the CSA–quadrupolar interference term in-
ior of the lineshape of the multiplet is obtained for values volves a quantity K depending on the asymmetry parameters
of b increasing until b Å 907. For values of b between 907 hQ and hCSA and also on the three Euler angles (a, b, g) .
and 1807 the lineshapes behave as indicated in the above As in the above case, the lineshapes are determined by T2CSA
case. As can be seen in Figs. 3 and 4, the change of the and T2Q and also by the value of K . The expression of K
sense of the asymmetry of the lineshape is linked to the sign shows that the values of K range from 01 to 2 and that a
of the K values. This point will be tackled after a brief given value of K corresponds to several sets of the values
discussion about the general case. of hQ, hCSA, and the three Euler angles (a, b, g) . This

For the 31P– 59Co spin system in HFeCo3(CO)11PPh2H, indicates that the lineshape analysis may leads to K but not
since the relaxation of the 59Co nucleus by the CSA mecha- to the values of each tensorial parameter.
nism is weaker than the quadrupolar mechanism (1) as in For the 31P– 59Co spin system in HFeCo3(CO)11PPh2H,
the case of other clusters (20–22) , the transition probabili- using this case of general noncoincident CSA and quadrupo-
ties Rm ,m= and consequently the lineshapes will depend on 1/ lar tensors, the lineshape analysis leads to the same results
T2Q and K /

√
T2QT2CSA but not on 1/T2CSA. The result is that as in the above case. Hence, only the values of the ratio

the lineshape analysis may provide only T2Q and the ratio K /
√
T2CSA, obtained above and listed in Table 1, are accessi-

K /
√
T2CSA. As the values of K and T2CSA are found to be ble. The T2CSA value must be inferior or equal to that obtained

correlated, the recourse to a new fitting of the experimental in the former case of coincident and axially symmetric quad-
rupolar and CSA tensors. The values of K cannot be closelineshapes is useless since K /

√
T2CSA can be determined using

the results obtained in the case of coincident and axially to zero and the other parameters remain unchanged. As stated
above, the lack of information about the two related tensorssymmetric quadrupolar and CSA tensors. For K Å 2, the

values of the ratio are presented in Table 1. Of course the limits our discussion.
The last point to consider in this section concerns thevalues of the other parameters, except T2CSA which is unde-

termined, are the same. Since K is between 01 and 2, T2CSA sense of the asymmetry of the lines. This point has been
also discussed in the case of dipolar and CSA interactionsis therefore inferior or equal to that obtained in the case

of coincident and axially symmetric quadrupolar and CSA (8, 23–25) which presents similarities with the related case.
For the quadrupolar and CSA interactions, the sense of thetensors (Table 1). However, the presence of the asymmetry

of the lineshapes enables us to exclude values of K close to asymmetry depends on the sign of the three quantities JSI ,
f, and K . Since the sign of f depends on the product of xzero and as a consequence we conclude that b is far from

the magic angle. In the same way, we can eliminate the low Å e 2qQ /h and Ds, the sense of the asymmetry will depend
on the product of the four quantities. The general rule forvalues of K which lead to low values of T2CSA in the range
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positive (26) , the sign of xrDsrK is therefore negative.
For the case of coincident and axially symmetric quadrupolar
and CSA tensors K is positive (K Å 2) and consequently
the sign of xrDs is negative. The absolute sign of these
two quantities requires supplementary information which is
not available.

Throughout this paper we have used the model of isotropic
molecular motion described by a single correlation time.
This model allows a complete calculation of the lineshape
and shows the influence of the relative orientation of the
related tensors on the lineshapes. Nevertheless it is clear
that the presence of anisotropic interactions often implies a
nonisotropic molecular motion described by multiple corre-
lation times. This situation introduces a complexity in the
calculation of lineshapes.

CONCLUSION

In this paper, we have derived a formalism for calculating
the lineshapes of a spin 1

2 J-coupled to a high-spin nucleus
undergoing quadrupolar and chemical shift anisotropy relax-
ations in the case of general noncoincident quadrupolar and
CSA tensors. The expressions show that the CSA–quadru-
polar interference term which is responsible for the asymme-
try of lines involves a factor K depending on the asymmetry
parameter hQ and hCSA and on the three Euler angles (a, b,

FIG. 3. Theoretical spectra for a spin-1/2 nucleus J-coupled to a spin-
7/2 nucleus in the case of noncoincident and axially symmetric tensors.
The plots versus reduced frequency (v0 0 v) /JSI correspond to JSI Å 450
Hz, T2Q Å 500 ms, T2CSA Å 5 ms, f Å 01 and to different values of b
( left side) .

the sense of the asymmetry of the spectrum is as follows.
If the quantity JrxrDsrK is negative, the spectrum is
asymmetrical with the highest maximum on the low-fre-
quency side of the pattern, and with the asymmetry reversed
if the sign of JrxrDsrK is positive. The spectra displayed
in Fig. 3 are calculated for positive values of the product
JrxrDs. The highest maximum is on the left side if K is

FIG. 4. Theoretical spectra for a spin-1/2 nucleus J-coupled to a spin-positive and is on the right side if K is negative.
7/2 nucleus in the case of noncoincident and axially symmetric tensors.

The asymmetry of the 31P spectra shows that the sign The plots versus reduced frequency (v0 0 v) /JSI correspond to JSI Å 450
of the product JrxrDsrK is negative. Since the coupling Hz, T2Q Å 50 ms, T2CSA Å 50 ms, f Å 01 and to values of b varying from

07 to 1807.constant between phosphorus and cobalt nuclei seems to be
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6. B. D. Nageswara Rao and B. D. Ray, J. Am. Chem. Soc. 114, 1566g) . The values of K range from 01 to 2. The value K Å 2
(1992).corresponds to the case of coincident and axially symmetric

7. T. C. Farrar and R. A. Quintero-Arcaya, Chem. Phys. Lett. 122, 41quadrupolar and CSA tensors. For the case of axially sym-
(1985).

metric quadrupolar and CSA tensors with the magic angle
8. T. C. Farrar, B. R. Adams, G. G. Grey, R. A. Quintero-Arcaya, and

between the principal axes K is equal to zero and the line- Zuo, Q., J. Am. Chem. Soc. 108, 8190 (1986).
shapes are symmetric. 9. T. C. Farrar and R. A. Quintero-Arcaya, J. Phys. Chem. 91, 3224

Using this general formalism, the lineshape analysis of (1987).
the 31P spectra in HFeCo3(CO)11PPh2H confirms the results 10. T. C. Farrar and I. C. Locker, J. Chem. Phys. 87, 3281 (1987).
obtained considering the case of coincident and axially sym- 11. A. Abragam, in ‘‘The Principles of Nuclear Magnetism,’’ Oxford

Univ. Press, London (1961).metric quadrupolar and CSA tensors (1) . The same values
12. J. A. Pople, Mol. Phys. 1, 168 (1958).are obtained for the 31P chemical shift d31P

, J(31P– 59Co),
13. M. Suzuki and R. Kubo, Mol. Phys. 7, 201 (1964).and T2Q(59Co). However, T2CSA(59Co) and K are found to
14. M. E. Rose, in ‘‘Elementary Theory of Angular Momentum,’’ Wiley,be correlated and only the ratio K /

√
T2CSA(59Co) is provided

New York (1957).by the lineshape analysis. The measure of T2CSA(59Co) re-
15. P. S. Hubbard, Phys. Rev. 180, 319 (1969).quires information about the two tensors. For this work,
16. M. Mehring, in ‘‘Principles of High Resolution NMR in Solids,’’solid-state NMR can be useful.

Springer, Berlin (1983).

17. M. J. D. Powell, Comput. J. 7, 303 (1965).
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